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Multifunctional variational method for description of evolution and dynamics
of dissipative structures in nonequilibrium systems

V. V. Osipov

(Received 7 May 1992)

A variational principle based on the introduction of a vector functional, each component whereof has
its extremum with respect to variation of only one (or a group of) macroscopic parameter(s) of a system,
is presented. The suggested method greatly facilitates the description of the characteristic parameters of
stationary and time-dependent complex inhomogeneous macroscopic states occurring in nonequilibrium
systems. The fruitfulness and simplicity of the presented method are illustrated by analysis of bifurca-
tion types and by studying the shape, stability, and evolution of spike strata and autosolitions. A non-
linear theory of pulsating spike strata and autosolitons of large amplitude is developed. It is shown that
the variations of the characteristic parameters of pulsating strata and autosolitons are relaxational spike
auto-oscillations which may be of periodical as well as of apparently chaotic character. A simple
method of analysis of quasiharmonic states is developed and, for a concrete model, it is shown that
supercritical-solution bifurcations take place only if parameters of the system meet very rigorous re-
quirements, i.e., it is confirmed that instability of the system’s homogeneous states leads, as a rule, to
abrupt formation of large-amplitude structures. The proposed variational principle is shown to be useful
for deriving a set of ordinary differential equations, which describe in a simple way the interaction be-
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tween autosolitons and turbulence in active distributed media.

PACS number(s): 05.70.Ln

L. INTRODUCTION

In recent years the interest in striking and amazing
phenomena of nonlinear physics has been progressively
increasing. Such phenomena are, for example, the forma-
tion of inhomogeneous macroscopic states in the form of
solitons and autosolitons in physical, chemical, and bio-
logical systems. The properties of such macrostructures
can be described by several macroscopic variables of
diverse origin 6; such as wave amplitude,
electromagnetic-field magnitude, densities, and tempera-
ture of various particles, etc. Macroscopic inhomogene-
ous static states can occur in nonequilibrium as well as in
equilibrium systems.

As follows from the principles of thermodynamics [1],
for any thermodynamically equilibrium system there is a
general functional ¥ (usually called free energy) which
has an extremum with respect to variation of each macro-
scopic variable 0, i.e.,

8F =0 . (1
Conditions (1) determine the equations describing ther-
modynamically equilibrium states, including inhomo-
geneous ones. Such an approach is used, for example, for
the study of inhomogeneous macroscopic states occurring
near various phase transition points [1].

The existence of such a general functional satisfying
condition (1) is the essential property of thermodynami-
cally equilibrium systems in which they vitally differ from
nonequilibrium ones. Besides, inhomogeneous states in
nonequilibrium systems may be not only static but also
periodically and chaotically time dependent, i.e., pulsat-
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ing structures and turbulence.

Actually, there is no ground to assert [2] that in the
general case for a nonequilibrium dissipative systems
there exists a single functional which has an extremum
with respect to variation of any macroscopic parameter
of the system. In other words, there is no general scalar
functional which makes it possible to obtain the equa-
tions of stationary states from conditions (1), and the
equations of time-dependent states from the following
conditions:

5F

-, 2)
56,

76,=

1

where 6, =83, /0t and 8F /80, is a variational derivative
of the functional F with respect to the variable ;.

In most cases the set of fundamental equations describ-
ing the properties of nonequilibrium systems is known.
However, attempts to study analytically even the station-
ary inhomogeneous solutions of such a set of nonlinear
partial differential equations have not been a success even
for the case of the two most simple nonlinear equations.
Time-dependent solutions are studied on the basis of nu-
merical analysis. At the same time information about the
exact spatial distribution of macroscopic variables is usu-
ally redundant. As a rule we are only interested in the
characteristic parameters of these distributions (the am-
plitude and the width of typical areas, stability, propaga-
tion speed, auto-oscillation frequency, etc.) and their
dependence on the excitation level of the system. That is
why an opposite problem as to how to formulate a varia-
tional principle, on the basis of fundamental equations,
which facilitates the study of evolution and dynamics of
complex dissipative structures is vital.
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In other words, it is promising to use the advantages of
variational methods, as they make it possible to change
over from studying a system of complicated nonlinear
partial differential equations to the analysis of algebraic
or ordinary differential equations describing characteris-
tic parameters of complex inhomogeneous states, includ-
ing time-dependent ones. This task is especially impor-
tant for the correct derivation of simplified equations
describing turbulence in various dissipative systems, or to
be more precise, time-space stochastic auto-oscillations of
an arbitrary large amplitude.

The stated problem is considered in the present paper.
A variational principle is developed on the basis of three
basic concepts. The main one is that for a nonequilibri-
um system one should not seek a single scalar functional
but a vector functional in the form of a collection of some
functionals, each having an extremum with respect to
variation of only one (or a group of) macroscopic variable
of the system, more exactly, with respect to either one or
several parameters on which the variables depend.

The second concept is dealing with the fact that the
method under consideration, as well as any other varia-
tional method [3], may be effective only when the qualita-
tive form for distribution of variables is known. For most
dissipative systems this condition may be considered
fulfilled, because the form of such distribution, as a rule,
may be determined from the general qualitative theory of
dissipative structures, which has been recently developed
[4-6], or from numerical analysis.

Finally, the third concept, which considerably facili-
tates the employment of this method, is that, according
to the general theory of dissipative structures [4—6], the
distributions of various macroscopic variables 6; differ
essentially from one another in form and may be de-
scribed by independent coefficients. One of the advan-
tages of variational methods is that the values of these
coefficients are weakly dependent on concrete type of tri-
al functions, which are used to describe concrete dissipa-
tive structures. Strictly speaking, this question requires
studying for every particular case.

This point, and the utility of the present method for
the description of evolution and dynamics of dissipative
structures, is illustrated by an example of a concrete
model. This model is chosen because it is the only model
so far for which analytical solution, approximately
describing complicated dissipative structures, has been
found.

II. VARIATIONAL METHOD
FOR STATIONARY INHOMOGENEOUS STATES

For clarity let us begin with the application of the vari-
ational method to the analysis of stationary inhomogene-
ous states occurring in dissipative media, whose proper-
ties are described by a system of differential equations of
the diffusion type:

7,0, =L}N0;—Q,(6y,...,0;,...,0x5,4,). A3)

In Sec. III this method is generalized for the case of equa-
tions of arbitrary type, as well as for time-dependent in-
homogeneous states. In the set of Egs. (3) the subscript

i=1,2,...,N, where N is the number of the macroscop-
ic variables 6, describing inhomogeneous states of a given
dissipative system; 7; and L; are the characteristic time of
relaxation and the length of changing of variables 6;; 4,
are the system’s parameters, including those determining
the excitation level.

Observe the fundamental character of the set of Eqgs.
(3). As a matter of fact, Egs. (3) are equations of physical
and chemical kinetics, and they are basic when inhomo-
geneous macroscopic states, the so-called dissipative
structures, are investigated in a broad class of nonequili-
brium physical, chemical, and biological systems [2,4-7].

Let us introduce a vector functional, whose ith com-
ponent is

®,= [[LLAVO, P+ U8y, ...,6,...,0y,4,)

—UyldVv , 4)

where
ei
ui=["06,...

and U, is an arbitrary constant independent of 6,. In-
tegration in Eq. (5) is performed at fixed values of all 6;
with j7i.

As follows from Egs. (4) and (5), Egs. (3) can be written
as

61 ..., 05, 4,)d06; (5)

5®,

’riei:—‘-g .

(6)
This is valid at neutral boundary conditions, i.e., when
V6;|s =0 at the system’s boundaries.

Emphasize that Eq. (6) differs essentially from Eq. (2)
by the fact that a separate functional ®; built on the basis
of the correspondence between Egs. (6) and (3) is used for
each macroscopic parameter 6;, instead of a single func-
tional F. Naturally, for some groups of variables 6, the
functional ®; may coincide.

As follows from Eq. (6) stationary states correspond to
an extremum of each of the functionals ®;, but with
respect to variation of only one system’s variable 8;. This
property of the functionals ®; makes it possible to use
the well-known variational methods [3].

Let us formulate the variational method which best
suits the analytical study of complicated dissipative struc-
tures. Note that the shape of the distributions 6;(r),
describing such structures, for most systems can be deter-
mined easily from the general qualitative theory of large-
amplitude dissipative structures [4-6]. Therefore, we
can approximately describe the distributions 6;(r) as

7
6,(r)= 3 6¥(r,cP,Cc?,...,CP,..

LCHY,
i=1 !

where 0&” are trial analytical functions which best de-
scribe the qualitative shape of distributions 0;(r); C},ﬁ’ are
the sought-for coefficients; j =1,2, ..., n;; n; is the num-
ber of trial functions; k =1,2, ..., m;; m; is the number
of the coefficients on which each trial function depends.
Function (7) must satisfy the given boundary conditions

at any value of C ](,?



90 V. V. OSIPOV 48

The substitution of (7) into Eq. (4) yields a set of func-
tionals ®; which are naturally independent of the coordi-
nates, but depend on the coefficients Cj; ) In the station-
ary case from condition (6) it follows that each of the
functionals ®; has an extremum with respect to an arbi-
trary variation of only the variable 6;; hence for all i, j,
and k we have

0D,
acyy
jk

(8)

Equations (8) forms a set of algebraic equations in
coefficients C;; determining the function 6,(r) of (7). As
®; depends on 4,, C; are functions of the parameters
A, including a parameter characterizing the excitation
level of the system. Functions C;;(4,) determine the
evolution of dissipative structures when the excitation
level A4, and other parametcts I tiie system vary (Secs.
IV and V).

III. VARIATIONAL METHOD
FOR DESCRIPTION OF INHOMOGENEOUS STATES
VARYING IN TIME

Equations describing macroscopic properties of none-
quilibrium dissipative structures can be written for a
rather general case in the form

76, =Fi(0,,...,0,,...,04,4,), 9

where F, is a certain functional; 7; is the variable 0; re-
laxation time incident to the corresponding dissipative
process in the system under consideration.

Following the variational method presented in Sec. II,
we seek solutions 6; in the form (7). Thus

nomy ae"(r)
6;(r,)=3 3 m cQ. (10)
j=1k=1

Let us substitute Eq. (10) into Eq. (9). Multiplying the

resultant equation by 36 /dC\? and integrating over the

space we obtain a set of ordinary differential equations in

coefficients C;;:
i

"L
T ZC‘,L’f

i=1k=1

ae-(ii) ae(ni) (l)

acy acy

N

F;
ac.y

dv .

=/

(11)

Recall that i =1,2,...,N, where N is the number of
macroscopic variables 6; describing an inhomogeneous
state of the given nonequilibrium system; k = m;
and m; is the number of the coeﬁiments C which the
trial function 95’ depends on; j =1,2, ...,n;, where n; is

J
the number of trial functions 0“)(r) approx1mat1ng

0,(r,t). Note that when the form of jdlstrlbutlons 0;(r) is
time dependent, the numbers n; and m; in Eq. (10), which
describe 0,(r,t), may differ from n; and m; in Eq. (7),
which determine the form of stationary distributions
0;(r).

The general equation (11) makes it possible to derive a
set of ordinary differential equations describing the evolu-
tion and dynamics of the characteristic parameters of in-

homogeneous states in dissipative systems on the basis of
fundamental partial differential equations (9).
In the case of Eq. (3)

Fi=L}A6,—Q,(6,,...,0,...,05,4,).

Substituting such F ; into Eq. (11) and taking into account
the definition (5), after obvious transformations under
neutral boundary conditions we obtain

n,om; C',(,') aeﬂi) ae(i)
Ti jgl k§1 ac(x) ac(t)
Y f L2(V6;)?
~acy 2

+U,-(91,...,9,-,...,BN,AP)—UO dV .

(12)

In the stationary case, i.e., when C";f,2=0, condition (8)
follow from Eq. (12) and expression (4).

Note that Eq. (11) can also be derived on the basis of
the Gauss variational method [3]. Indeed, following the
concept of this method we can regard 6; and 6; as in-
dependent variables and introduce a set of dissipative
functionals

D=1 [ [r,6,—F,%av . (13)
As follows from Egs. (9) and (13)

oD,

——=71,0,—F,=0. (14)

90;

Thus each of the dissipative functionals D; has an ex-
tremum with respect to an arbitrary variation of a vari-
able 6;. From this property of functionals (13) it follows
that

L[ (76, —FPdv=0. (15)
aC, *

The substitution of Eq. (10) into Eq. (15) and subsequent
differentiating yields Eq. (11).

Equation (10) and specifically Eq. (12) greatly facilitate
studying the stability of inhomogeneous states, the
description of their transformation dynamics, and the
analysis of periodically and stochastically oscillating dis-
sipative structures, i.e., turbulence in concrete systems.
Some examples of these effects are considered in the fol-
lowing sections where spike strata and autosolitons,
which can occur in various nonequilibrium physical,
chemical, and biological systems [4—6], are analyzed.

IV. EVOLUTION OF SPIKE STATIC STRATA

Autosolitons and strata are localized highly nonequili-
brium regions occurring in various nonequilibrium sys-
tems including electron-hole and gas plasma, heated gas
mixture, ferroelectric photoconductors, composite super-
conductors, as well as in semiconductor, magnetic, and
optical nonlinear media [4-6]. Properties of many of
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these systems can be described by a set of two diffusion
equations of type (3) [4,6].

Evolution of static strata and autosolitons in these
different physical media can be fairly easily analyzed on
the basis of the variational method developed in Sec. II
because the qualitative shape of inhomogeneous states in
a concrete physical system can be found from the general
qualitative theory of autosolitons and strata [4—6].

However, because of the complexity of nonlinear equa-
tions describing strata in real physical systems, even ap-
proximate analytical solutions determining the properties
of autosolitons and strata have not been found. The only

exception here is the classical biological Gierer-
Meinhardt model [3,8,9]:
T0=1A0+ A0y '+1—0, (16)
T =L*An—n+6*, a7

where 6=6,, n=06,. For this model approximate analyti-
cal solutions, which describe the distributions 6(x) and
7(x) in the form of a stratum or a one-dimensional auto-
soliton at e=I/L <<1 and € << A2< 1, have been found
[4,10]. So it is natural to choose model (16),(17), as a test
for verifying the accuracy of the results obtained by the
presented variational method.

In accordance with the general qualitative theory [4,6]
at e=1/L << 1 model (16),(17) allow solutions in the form
of a narrow spike stratum. Such a stratum is an inhomo-
geneous state in which the shape of distribution 6(x) is a
large-amplitude spike with the size of order /, and the dis-
tribution 7(x) changes smoothly with the characteristic
length of order L [Fig. 1(a)].

In a simple case, when size .L of the sample satisfies the
condition / <<.L << L and at its boundaries 0, =7, =0 [at
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x ==+.L/2 in Fig. 1(a)], we can assume 7(x)=const and
seek the solution in the form

0(x)=C, cosh ™" 5% +Cpy m=Cy . (18)
According to Eq. (4) let us introduce the functionals
L
®,= [ 4126, + U1 (00x),n(x)) Jax (19)
and
— L2 17 200 )2
q>2—f0 [LL 27, 2+ U, (8(x),m(x)) Jdx , (20)
where
3,,—1 2
v=—49n_ 446 @1
3 2
2
U,=—0+1 . (22)

2

It is easy to see that the substitution of Egs. (19)-(22)
into Eq. (6) at neutral boundary conditions yields Egs.
(16) and (17). Thus, for a stationary case functionals ®,
and ¥, have extrema with respect to variation of the
variables 6=0, and n=0,, respectively. In other words,
¢, and P, satisfy condition (8), which, for the problem
under consideration, can be written as

daCc,, ~ aC,, ~ 9Cy,

0,

= (23)
For definiteness assume that n =2 and £=; in (18).

Then the substitution of Eq. (18) into Egs. (19)-(22)
yields

b) 6 e n
30 A I 30
15 1 F1s
n
) -1 0 1 2 x/L
4
© o 2 @ 7
50 4 50
3
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FIG. 1. Evolution of a stratum and an autosoliton under change of the excitation level (parameter A) of a system. (a) and (b) The
distributions 6 and 7 are shown in the form of a stratum and an autosoliton, respectively [the numerical calculation results of the
models (16) and (17) at 4 =0.9 and €= 1072 (Ref. [6]); (c) and (d) bifurcation characteristics, i.e., dependences of the values of 6 and 7
on the parameter A4 in the center of a stratum or an autosoliton, are shown (curves 1 indicate dependences 6=6, and n=1, for an
homogeneous state; curves 2 for a stratum; curves 3 for an autosoliton at n =2 and {= % ; curves 4 for an autosoliton at n =1 and
£=1; curves 5-7 for low-amplitude periodic strata at different values of €; curve 5, € <€ ; curve 6, e=¢,; curve 7, €, <€ <¢€,,). Solid
lines show distributions 8(x) and 7(x) at L >>.L, dashed lines illustrate those distributions at L >.L in (a). Dashed lines correspond

to the unstable states in (c) and (d).
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®,=%IC} —214C},C3,CH' —414C}C,Cq!
16IAC 3,Cot —2IC,, +2IC,,Cyy
_%A‘,Lclzci _—.,LC12+ -LC12 Py (24)
_L L 8 8/
<1>2—TC§1—TC 3.,£C +£C11012+C . (25)
From Egs. (24) and (25) we find
0P, —3 _ 2 ~—1__3 —1
81C,, —21AC%,Cy' —314C, C1,Cy
—14C%,C5 ' =21 +21Cy, , (26)
a‘bl:_l —1_ 4 2 ~—1__1 2 =
414C,,C,Cy —214CT,C 1A4LCH,C
aC, :
—+L+1LC,+2C,,, (27)
0P, L 81 81
aCy, 5 Cu— 3L <, Ch -7 C11C12 Cch (28)

Equations (26)—-(28), together with Eq. (23), form a set of
algebraic equations in the coefficients C{9, C{%, and C%Y
describing characteristic parameters of a static stratum
The approximate solution of this set of equations at
L>land C;; >>C,, is

172
AL A}
C(O): (0) — 1+ 11— —= , 29
217 121 12 (29a)
where A, =(241/.L)!?, and
3c(0)
C(l(i)Eemax 01— 2;1 ’ (29b)
(0 S
c33)591=—72’7 [1—\/1——4A /' (29¢)

The substitution of (29) into (18) yields the sought-for dis-
tribution 6(x).

Notice that the found characteristic parameters (29) of
distribution 6(x) obtained on the basis of variational
method presented in Sec. II are in perfect agreement with
their true values reported in [4,6]. True distribution 6(x)
practically coincides with Egs. (29) and (18) at n =2 and

=1 because the exact value £=1(1—44/9'9)!?=1 at
L >>]and A > Ab [4,6].

For a more precise analysis of the problem we shall re-
gard quantities n and & in Eq. (18) as independent
coefficients (n =C; and §=C,,). Then we arrive at a set
of five algebraic equations in the coefficients C{, C'%,
c\%, €9, and CY. This set of equations satisfies the ex-
act solution found in Ref. [10] on the basis of the analyti-
cal study of the considered problem. This exact solution
coincides with Egs. (29) and (18) for n =2 and
E=1(1—44/7)"2 [4,6].

We can also note that Egs. (29) relatively weakly de-
pend on the values of n and £=n ~!. Equations (29) also
do not alter considerably if we use exp(—x2/I?) instead
of cosh™ "(£x /1) in Eq. (18). In other words, the main re-
sults obtained by the variational method presented in Sec.

II relatively weakly depend on the accuracy of the
description of distribution 6(x). This conclusion
confirms one of the basic advantages of variational
methods (see also Sec. VI).

It can be seen from Egs. (29) and (18) that the ampli-
tude 6,,,,=C'y of a stratum decreases as A decreases.
At the point A4 =A4,, where 0/dA=cw and
d0,,./d A = [Figs. 1(c) and 1(d)], the stratum with the

large amplitude

3L
81

172
>>1 (30)

Gmax

disappears abruptly. Equations (29) and (18) also de-
scribe the stratum evolution when the size of the system
varies. Specifically, it follows from them that the stratum
disappears abruptly when the system’s size becomes less
than the quantity £, =2414 2.

V. STABILITY OF STATIC
AND AUTO-OSCILLATIONS
OF PULSATING SPIKE STRATA

As is seen from the analysis of the formation condi-
tions as well as from the numerical study of a spike stra-
tum, the shape of this stratum is unchanged in the pro-
cess of auto-oscillations and qualitatively coincides with
the shape of a static stratum [4,6]. In other words, the
process of pulsating of a spike stratum is auto-oscillation
of the stratum amplitude emax—elzc 11 and its charac-
teristic values 8;=C,, and 7'=C,,. That is why ex-
pressions (18) at n =2, £=1, and time-dependent
coefficients C;;,C,,C,; may be used for the study of pul-
sating strata dynamics in model (16),(17).

The substitution of Eqgs. (18)—(22) into (12) and calcula-
tion of the corresponding integrals yields

. . 1 9%
3-79C11+79C12—_—278C11 s (313)
4] . . 2 0P,
—19C1; +76C , (31b)
£ o~ 11 oL 12 .,L 8C12

. 2 aq>2

C .
T,,] 21 = L aCZl (31¢)

Substituting Eqgs. (26)-(28) into Egs. (31) and taking into
account L >>] and C;; > C,,, after obvious rearrange-
ment we obtain equations describing the time-dependent
characteristic parameters of the stratum

. 84 _
taCy = 15 < ChCx +%Acnclzczl1
: _ 814 6l | _
aC,=ACHCy' —Cpp+1— 15L I_I C%ICZII ’
(33)
. 81/ 8/
Cy=—— AL —C3 +,£ C“C12+C12 Cy (34)
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where a=74/7, and time is measured in the units of 7.
To study stability of a static stratum we seek the solu-
tion of Egs. (32)-(34) in the form

C,()=C+8Cexp(—y1) , (35)

where C}J-O’ is determined by Eqgs. (29). Linearizing Eqgs.
(32)—(34) with respect to small perturbations 8C;; << C{’
we find an equation determining the quantity y:

y3—ay?’+by—c=0, (36)
where
_ _ 2 6
=q I(1— 1 +a)——
a=a (+—a)ta € y (14+a) 5 |

b=a [1+&M—1—a™ "]

72

-! 6a+7+%(1+a_‘)

+ea

—12(aAM)_1—24(AM)_” ,

120 4

c=a"? [g(l—MHe y 2

4 72(AM +1)(5—M)
25AM ’

2 1172

A
A

M= |1t
A2

Analysis of these equations shows that conclusions which
can be drawn from it are close to those drawn from the
equation

3aC 2+ (3O + 44 —2aC)

=0. (37

Equations (37) follows from linearized Egs. (32)-(34) if
we take into account that at .L >>/and 4 > A4, according
to Eq. (29) the quantity C'3 =1 and much less than C}
and C\, and according to Egs. (33) and (29) the ampli-
tude of oscillations of the quantity C,,, i.e., 8C,, is much
less than 8C,;, 8C,;.

The principal result following from Egs. (36) and (37) is
that at C5) < 42L(61)~! for one of the values of v, the
quantity Re(y)<O0 regardless of a. In other words, the
smaller-amplitude stratum, with parameters correspond-
ing to the minus in Egs. (29), is unstable regardless of
a=7y/7,. This conclusion confirms the general result of
the theory of strata [4,6], according to which the lower
branch of the curves 11'°( 4) and 0,,,,(4) indicated by
the dashed lines in Figs. 1(c) and 1(d) corresponds to un-
stable states in the form of the smaller amplitude stra-
tum.

It follows from Egs. (36) and (37) together with Egs.
(29) that a large-amplitude stratum is unstable only when
a condition, which can be approximately written as

a=1y/1,< 1,2+%{1+[l—(Ab/A)2]”2}_‘ , (38
is satisfied. From Eq. (38) we can see that at « less than a
quantity of order one and .£ >>! the stratum is unstable
practically regardless of the value of 4. This conclusion
is consistent with the result of the general theory of spike
strata stability [4,6].

On the other hand, a stratum is stable if an inequality
opposite to (38) is valid. Substituting the boundary value
of 4 =4, from Eq. (29) into this inequality we obtain
that when
172

, (39)

241

a>1.2+
L

the larger-amplitude stratum [corresponding to the plus
in Eq. (29)] is stable in the whole range of its existence up
to the point 4 = A4, [Figs. 1(c) and 1(d)] where the stra-
tum abruptly disappears.

The linear theory of static spike strata stability [4,6]
predicts that pulsating spike strata can occur in a system
at a<S1. On the basis of the presented variational
method we have obtained a set ordinary differential Eqgs.
(32)—(34) describing nonlinear auto-oscillations of the
characteristic parameters of pulsating strata, including
arbitrary large-amplitude ones.

It follows from the results of numerical analysis of Egs.
(32)-(34) that the amplitude of auto-oscillations of the
quantity C,, =0, is small in comparison with the ampli-
tudes of auto-oscillations of the quantities C,; =6,,,— 06,
and C,, =71'? (Fig. 2). This result was used for deriving
Eq. (37) and, as it might seem, it enables us to restrict our
consideration of a pulsating stratum to investigate a set
of two equations (32) and (34) putting C;,=C{Y =1 [as
follows from Eq. (29)].

However, a set of two nonlinear differential equations
allows solutions only in the form of either damping, in-
creasing or strictly periodical auto-oscillations, depend-
ing on the parameters of the system. At the same time
analysis of the set of three equations (32)—(34) shows that
undamped auto-oscillations of main parameters of a pul-
sating stratum may not be strictly periodical and at some
values of the system’s parameters they have essentially
stochastic character (Fig. 2). In other words, here we ob-
serve the well-known result of the general theory of
auto-oscillations [11,12]: a transition from a set of two
nonlinear differential equations to a set of three or more
ones can be accompanied by arising stochastic auto-
oscillations.

Analysis of Egs. (32)-(34) also shows that undamped
auto-oscillations of stratum amplitude can occur in rela-
tively narrow ranges of the values of @ and 4. Moreover,
the initial values of coefficients C,;, C,,, and C,; must be
chosen relatively close to the values of C\}, C{%, CY
determined from Egs. (29). In other words, the attracting
region of the state in the form of a stationary pulsating
stratum with respect to initial perturbations is very small.

When A =0.745 and [/£=10"2 the homogeneous
state is stable, but in a system with a>1 a stable static
large-amplitude stratum can be excited; a pulsating stra-
tum (Fig. 2) occurs at 0.7<a<1; at a<0.7 auto-
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FIG. 2. (a) A pulsating spike stratum in small-size systems; (b) and (d) auto-oscillations of the stratum amplitude, i.e., of the quan-
tity 6,.,=C); (curve 1), as well as of the quantities 17(0)=C,, (curve 2) and 8;=C|, (curve 3). The results of the numerical analysis
of Egs. (32)-(34) at I /L =102, @=0.75 are shown in (b) for 4 =0.745 and in (d) for 4 =3. (c) illustrates the 6-7-plane projection

of the phase portrait of the auto-oscillations shown in (b).

oscillations of the stratum are damped and an homogene-
ous state forms in the system.

At A4 =3 the homogeneous state is unstable, but at
a>1.2 and 1 /L =1077? a stable static stratum can be ex-
cited in the system; a pulsating stratum [Fig. 2(d)] occurs
at 0.3<a<1.2; at ¢<0.3 the pulsating stratum disap-
pears and homogeneous relaxational spike auto-
oscillations, the theory of which is developed in Ref. [13],
occur in the system.

As A increases, the amplitude of auto-oscillations of
the stratum, that is, the quantity A8, ,,, increases sharp-
ly: at 4 =0.745 the value of A@,,,=30 [Figs. 2(b) and
2(c)] and at 4 =3 the value of A6, =2800 [Fig. 2(d)].

As A decreases, the quantity A8, ,, also decreases and
at some value of A slightly greater than A4, [Figs. 1(c)
and 1(d)], the pulsating large-amplitude stratum disap-
pears abruptly and the stable homogeneous state forms in
the system. It follows from the considered example that
on the basis of the presented variational method the evo-
lution of static, as well as pulsating strata, can be investi-
gated easily.

Note that the dynamic equations (32)—(34) describe ki-
netics of stratum formation as well. Specifically, they al-
low us to find the value of perturbation, more exactly, the
initial values of coefficient C,; in Eq. (18) at which spon-
taneous stratum formation begins at a given value of 4.

We have considered the simplest case of a stratum
occurring in a sample of the size £ << L when the param-
eter 77 can be assumed independent of x. The dependence
n(x) in a sample of the size £ <L can be taken into ac-
count by using the following expressions instead of Eq.
(18):

0(x)=C,,cosh? % +Cy,+C5c0s 2mx , (40)
7(x)=C,, +C,,cos ZLL" 41)

Analysis shows that the coefficients C;; and C,, de-
crease proportionally to the quantity £ /L and the main
results, including Egs. (29) for a static stratum, as well as
condition (38) and Egs. (32)-(34) for a pulsating stratum,
remain valid even for the case £L=2L. Results obtained
in the following sections, where another limit case
(L >>L) is analyzed, lead to the same conclusions.

VI. EVOLUTION
OF STATIC SPIKE AUTOSOLITONS

An autosoliton occurs in an extended system of the size
L >>L, and in the one-dimensional case it is a complex
shape solitary stratum [Fig. 1(b)]. An autosoliton is a lo-
calized large-amplitude state which at the periphery
asymptotically approaches a stable homogeneous state of
the system 6=0,, n=mn,, [4,6]. One can easily see that the
homogeneous state of model (16),(17) is

0,=1+4, n,=(1+4)?, (42)
This state is stable at 4 < A4, where [5,6]
A, =(1+e)(1—2e—€*)". 43)

When e=1[/L <<1, the quantity 4, =1+4e=1.

It follows from the numerical analysis and from the
general qualitative theory of autosolitons [4,6] that at
€=1/L << 1 the solution of model (16),(17) may have the
form of a spike autosoliton [Fig. 1(b)]. Such an autosoli-
ton is a symmetrical about the center of the solitary state
[the point x =0 in Fig. 3(a)] in which distribution 8(x) is
a spike described by the same function as in Eq. (18).
Distribution 7(x) smoothly varies everywhere with the
characteristic length of the order L. Far from the spike
distributions 6(x) and 7(x) approach the values of 6, and
My, respectively, approximately following the law
exp(—|x|/L). According to these results we shall seek
the distributions 8(x) and 7(x) in the form
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N x| w | 126, )?
6=C,,cosh2 _1 +Cpexp | =<1 |46, , (44) q>1=f0 5 HU0x),n(x) = U,(6,,m,) |dx
(46)
x w | L2(})
n=Cyexp _’|Z|' +1 45) <I>2=f0 Tx-i—U2(9(x),1](x))—U2(6h,nh) dx ,
47)
where |Cy,|>>|C,|, L>>1, and 4 <1. It would be where U, and U, are defined by Egs. (21) and (22); the
more correct to use cosh !(x/L) instead of quantities U,(8,,7,) and U,(6,,7,) are added to func-

exp(—|x|/L) in Egs. (44) and (45). But the difference, as
can be shown, weakly influences the results given below.
To analyze an autosoliton we introduce the following

functionals instead of (19) and (20):
J

tionals (46) and (47) to avoid the divergency of the in-
tegrals at the infinity.

The substitution of Egs. (44) and (45) into Egs. (46) and
(47) yields

21 1 46, 41 L
&, ==C+ |-———— | | =-C3 +4IC,,C\, +C},
LS 2 Cy+my [ |37 nEeta
A l6l 3 > . L 3 A L
- C +4iC3?,C,,+6IC;,C3,+=C —— |2IC;Cy +—C,C , (48)
3(Cy + 1) 11 12 ntnT54tn Cyy 1, nea T enta
4]
<1>2=§c§1—c21 0,(Cy,L +4IC11)+§C%2+—3~C%1 . (49)
[
It will be shown below that C,; ~€~!>>1 so the small oD, L 4
terms, such as C5;'InC,, are ignored in expression (48). 3C =LC,, —0,(C,L +4IC,, )-—?C%Z C
Deriving Eqgs. (48) and (49), we take into account 21
€=1/L <<1 and |C ;| >>|C,|. It follows from Egs. (48) (52)
and (49) that
90, 4 2c,+ 1_ A6 |81 2L, +aIc,, Equations (50)-(52) together with Eq. (23) constitute a
aCy, 15 2 Cytmy 3 set of algebraic equations determining characteristic pa-
24I1C,, rameters of a static autosoliton, i.e., the values of C'Y,
C T C9, and CY}. It follows from these equations that at
207 Mk e=1/L <<1 and cy>|c®|
A
— ————(18IC}, +8IC,,C}, +6ICT,) ,
3(C21+77h) 5 11 11>12 12 , 1) 1
€
(50) C‘H)—:emax—eh—“—e 1+ 1————142 ), (53)
L (41C;, +LC,y)+ —ECa
aCy, 2 Cy +”7h ! 2 (Cyr+my)
A 5 5 CcY =n(0)= —(C ,
————(4ICy, +12IC,C |, +LCY,),
3(C21+77h)( 11 1t i2) o (54)
(51) C®=06,,—0,=—4eCY) .
@ ° T 0 (O 6 n©)
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6
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FIG. 3. (a) A pulsating spike auto-soliton; (b) the form of the autosoliton amplitude auto-oscillation, i.e., of the quantity 6., =C/y,
as well as of the quantities 17(0)=C,; and 6,=C},. Results of the numerical analysis of Egs. (60)-(62) at e=I1/L = 1072, =0.58,
and A4 =1 are shown.
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By substituting Eqgs. (53) and (54) into Egs. (44) and (45)
we find the functions 6(x) and 7(x) describing the shape
of a spike autosoliton [Fig. 1(b)]. We emphasize that,
when e<< A2<1, these functions practically coincide
with the results obtained for model (16),(17) on the basis
of the theory of singular perturbations specially
developed in Ref. [10] for narrow spike autosolitons [4,6].

One can see from Egs. (44) and (53) that at e<<1
the amplitude of an autosoliton, i.e., the value of
6 ax— 0n =C'Y, decreases as the system’s excitation level
A decreases. At the point

172

2Ly (55)

A=d,= |

where dO,,,/dA =0 and dn(0)/dA = [curves 3 in
Figs. 1(c) and 1(d)], the autosoliton, which at L >>/ has
large amplitude

172

3L >>1, (56)

emax - 6h = 4]

disappears abruptly.

Note that the autosoliton’s threshold values deter-
mined by Egs. (55) and (56) coincide with the quantities
A, and 6,,, from Egs. (29) and (30) for a stratum if we
replace the system’s size .L by the quantity 2L. This
quality determines the autosoliton localization region size
where the relative change of the value of 7(x) is only of
the order of one [Fig. 1(b)].

Note that if we replace cosh ™ 2(x /2I) in Eq. (44) with
cosh™!(x /I) we obtain the following expressions instead
of Egs. (53) and (54):

a2
3rA b
WO=="Z 1+ 1—— | |
= 33 AZ] }
(57)
32\ 1St
b3 | L L ’
c=e(CcQ? CY=—meC} . (58)

It is seen that Egs. (57) and (58) do not differ greatly from
Egs. (53)—(55). The same conclusion can be made about
the substitution of the function cosh™!(x /L) instead of
exp(— |x| /L) into Egs. (44) and (45). In other words, the
main parameters of autosolitons, as well as those of strata
(Sec. IV), weakly depend on the details of the shape of
6(x) and 7n(x) [Figs. 1(c) and 1(d)]. To a greater extent
this conclusion can be applied to the functional depen-
dences of the autosoliton’s characteristic parameters on
the quantities 4, /, and L, i.e., on the system’s parame-
ters.

We can see from Eqgs. (55) and (57) that 4, <<1 when
L >>121. This result confirms the conclusion, drawn ear-
lier on the basis of qualitative analysis of a concrete sys-
tem [4], that autosolitons in the form of a localized highly
nonequilibrium regions, some kind of a ball lightning, can
be excited in a system slightly deviated from its thermo-
dynamic equilibrium.

VII. STABILITY OF STATIC
AND SELF-OSCILLATIONS OF PULSATING
SPIKE AUTOSOLITONS

As is seen from the analysis of stability of the autosoli-
ton, its shape does not change in the process of spontane-
ous formation of a pulsating autosoliton, i.e., the shape of
distributions 6(x) and 1(x) remains unchanged and coin-
cides with that of the static autosoliton [4,6]. This fact is
also confirmed by the numerical analysis of pulsating
spike autosolitons. That is why we can use Egs. (44) and
(45) with time-dependent coefficients C;; for the study of
stability of a static autosoliton and auto-oscillations of a
spike autosoliton.

Substituting Eqs. (44)—(47) into Eq. (12) and calculat-
ing the corresponding integrals we find

270.C +7,C -_L 0P, (59a)
3 0 11 [} 12 21 aCl] >
. . 2 a¢1
4etoCqy +79C1p = T aC, ’ (59b)
. 2 0P,
Tncll - Z aC21 (590)

Substitute Egs. (50)-(52) into Egs. (59). As a result after
obvious rearrangement at e=//L <<1 and C,, <<|C},]
we obtain dynamic equations describing the time depen-
dence of the autosoliton’s characteristic parameters:

4 4A9h

2aCy=—Cy |7~
3a 11 11 5 3(C21+77h)

A

+—————3(C21+nh) [tc3 +4C C, +C], (60)

Cy = —2[Cy —0,(C, +4eCy)—1C}, —4eCF ],  (61)

. 2406,
aC,=5€C;;—Cypy |1 C21+77__h“
——4 (¢, —1ch,+teC?) (62)
Cytn,

where a=714/ Top and time is measured in units of Ty

To investigate stability of a static autosoliton we seek
the solution of Egs. (60)-(62) in the form of Eq. (35),
where C,~(j°) are defined by Egs. (53) and (54). Linearizing
Eqgs. (60)—-(62) with respect to the small perturbations
8C;; and using € <<1 we obtain an equation which deter-
mines the value of ¥ in Eq. (35):

A —ar*+br—c =0, (63)

where
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A=ay, a=2a—0.2|1+e 9—1_3__134% ’
b=4.4a |1—e 3.5+91'4—5-_%;%

1.2 1—e{17+1—j+% ,
c=2.4a|1—¢ 9~3-_A4_767

Analysis of this equation reveals that, when € <<1 and
c9,cQ>>|ciP|, the smaller-amplitude autosoliton
corresponding to the minus in Eq. (53) are unstable re-
gardless of a. In other words, the lower branches of the
curves 6,,.(A4) and 7(0)( A4) indicated in Figs. 1(c) and
1(d) by the dashed lines correspond to unstable states.
These conclusions qualitatively coincide with those ob-
tained in Sec. V for a stratum in a small-size system and
confirm the results of the general theory of autosoliton
stability [4,6].

It follows from analysis of Eq. (63) that the larger-
amplitude static spike autosolitons, corresponding to the
plus in Egs. (53) and (54), become unstable (Rey <0) with
respect to an increase of the perturbation given by Eq.
(35) with Imy Eon”§(6a)l/ 2 if the condition, which can
be written at € << 1 in the form

133303  0.15

a<0.59+¢€ 1 VE

> (64)

is satisfied.

From Eq. (64) we can draw conclusions qualitatively
coinciding with those given in Sec. V where condition
(38) of instability of a spike stratum in a small-size system
was discussed. In particular, it follows from (64) that at
€<<1 spike autosolitons are unstable when a<0.59,
practically regardless of the system’s excitation level (the
quantity A). This result confirms the conclusion of the
general theory of autosoliton stability [4,6] according to
which a static narrow spike autosoliton is unstable when
the value of a is less than a quantity of order one. As a
result of such instability a pulsating spike autosoliton
may occur in the system.

Obtained on the basis of the presented variational
method, Egs. (60)—(62) describe nonlinear arbitrary am-
plitude auto-oscillations of the main parameters of a pul-
sating autosoliton. The results of numeric analysis of
these equations show that the amplitude of auto-
oscillations of the quantity 6.;,—8,=C,,, as it should
have been expected, is small in comparison with the am-
plitude of auto-oscillations of the quantities
Omax— 0, =C, and 7(0)=C,, (Fig. 3).

Auto-oscillations occur in a relatively narrow range of
values of a, and at 4 <1 they are nearly periodic. For
example, at €e=10"% and A4 =0.9 stationary auto-
oscillations, i.e., pulsating autosolitons (Fig. 3), occur
only when 0.58 <a <0.6. At a> 0.6 a static autosoliton,
which in accordance with condition (64) is stable, can be
exited in the system; at a <0.58 all the initial perturba-

tions are damped and the system relaxes into a homo-
geneous state. At e=10"2and 4 =0.9 a pulsating auto-
soliton occurs only when 0.56<a¢<0.6, and at
A =0.5—only when 0.51 < <0.53.

A state in the form of a pulsating autosoliton has a
very small region of attraction, i.e., it can be excited only
when the initial values of C;, C},, and C,; are chosen
close enough to their stationary values C\, C'9, and
CY), which are determined by Egs. (53) and (54). The
amplitude of oscillations of the autosoliton decreases as
A decreases, and at A slightly greater than the quantity
A, [Eq. (55)] the pulsating large-amplitude autosoliton
disappears abruptly.

VIII. THE TYPE OF BIFURCATION:
THE CONDITION OF FORMATION
OF SMALL-AMPLITUDE PERIODIC STRUCTURES

The presented variational method allows us to fairly
easily analyze the type of bifurcations at the points where
the original state (a homogeneous, as well as inhomogene-
ous one) ceases to be stable. For simplicity let us illus-
trate this by an example of a homogeneous state of a sys-
tem. Such a state, as pointed out in Sec. VI, becomes un-
stable at the point 4 = 4, determined by condition (43).
This instability takes place due to the increase of critical
fluctuations with the period .L,=27(IL)"/?>>1 at L >>1
[5,6]. In other words, 4 = A, at the point where the
homogeneous state (42) of the considered model (16),(17)
branches with the inhomogeneous small-amplitude har-
monic solution in the form

0(x)=CUCOS —2ﬂ‘ +C12 N
Lo
(65)
7(x)=C,,cos Zmx +C, .
Lo

Substituting Egs. (65) into Egs. (19)—(22) and integrating
we find the functionals ®, and ®,:

2
_ 1 | wl
L 1=‘2' e Ch—1Cn+4iCh+iCh
— 4 C3C 2 13
6C (C1,CpB+3CHC(1-Cy B +3CY;
22
C}C5 3C,C1Cy
+ (1-CyB)————(1—-C, A1,
c2, 21 C» 21
(66)
1 L 2
_ T
D, L lzi v C3,—1Cy CHL +1C3,+1Ch,
“%Czlc%l_%czzclzcu ’ (67)

where B=(C3, —C3,) /2. The substitution of Egs. (66)
and (67) into Eq. (8) yields a set of algebraic equations in
the coefficients C\9, C\3, C%Y, and CY determining pa-
rameters of periodic static states in the form (65) at the
values of A close enough to A4.. It follows from this set
of equations that
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9 =(cy )2+‘(C‘°’)
(68)
sz :C(O)C(O)(ZBL )—1 R
ClY=1+BA(CY)
© clOc©®
+A(1—BCY) 20922 | (69)
(3(0) (79§
C(O)Bl A (C(O) )2 A I_BC(Z(;)
4 (j(O) 6 (:g%
o, JCRCH)?
3(CY; 2+ _T
(cP
sciycRcsy
o | (70)
Cxn
where
L’ ak
B =4+ |72 |, B=4+ |1 (71)

Dividing Eq. (70) by Eq. (69) and using Eq. (68) we obtain
an equatlon in the amplitude of a harmonic, more exact-
ly, in the quantity a=C9/C{9. It follows from this
equation with the accuracy of order a*<<1 that

2
=(A4D)""|B,B,(1+ 4)—1 4 Q—L ,  (72)
where
D =(B} =)= 3B, —3)(Bf —{)—3$BL +1B]
2

B
BBy || 7

L

At the beginning of this section it was pointed out that at
the bifurcation point 4 = A, the critical fluctuation
period is .L=.,=2m(IL)'/?. Substituting this quantity
into Egs. (71)-(73) and taking into account that e<1
and, at 4 close to A, the quantity C{3 =6, we find ap-
proximately

326%¢€°
A

A(1—2e—€*)—(1+¢€)?
(18€*+2e—3)

_ 1663(A4 — A4,)62

" 9d(et+e)e—e e, —€)ete,)

where €,=0.47, €, =0.36, €,, =0.41, €,=2.41.

Equation (74) gives C(O) ~|A4 —A,.|'% This result
conforms with Landau’s general conclusion [1] that the
amplitude of a quasiharmonic inhomogeneous state in-
creases proportionally to the square root of the supercri-
ticality, i.e., of the quantity | 4 — A, |

The quantity 4. in Eq. (74) is defined by Eq. (43) from
which it follows that homogeneous state instability (and,
consequently, the considered bifurcation of solutions)
takes place only at € <€,,. Therefore, according to Eq.
(74) the supercritical solution bifurcation, indicated by
curve 7 in Figs. 1(c) and 1(d), is realized only if the condi-
tion

(O) )2

(74)

€. <e€<e, (75)

is satisfied. In this case a soft mode of formation of
quasiharmonic states, the amplitude of which increases
monotonically under the law (4 — 4, )12 as A increases,
takes place. As €,,=0.41 and €,=0.36, it follows from
condition (75) that such a mode can be realized only at
extremely rigorous requirements to the system’s parame-
ters and only at the values of A4 very close to the quantity
A.. In other words, a soft mode of spontaneous forma-
tion of small-amplitude quasiharmonic states, as stressed
in Refs. [5,6], is very difficult to realize in numerical in-
vestigations, the more so in experiments.

It can be seen from Eq. (74) that when e—¢€_, the form
of branching solutions tends to the vertical line [curve 6
in Figs. 1(c) and 1(d)]. The demarcation value of e=¢,
determines the boundary between the soft and hard
modes of excitation of quasiharmonic inhomogeneous
states.

At € <€,=0.36, according to Eq. (74), quasiharmonic
small- amphtude states occur only at 4 < 4, [curve 5 in
Figs. 1(c) and 1(d)], i.e., a subcritical solutxon bifurcation
takes place. In this case large-amplitude structures, in-
cluding those in the form of periodically arranged strata
with the shape like one of the stratum shown in Fig. 1(a),
arise abruptly at the point 4 = 4,.. As a result, pulsating
and even stochastically oscillating quasiharmonic states
can occur in the system.

Substituting Eqgs. (65)—(67) into the general equation
(12) it is easy to obtain the equations describing the dy-
namics of formation of small-amplitude states with an ar-
bitrary period. We emphasize that the variational
method developed for the study of small amplitude states
allows a fairly easy analysis of the types of bifurcation
occurring near points of instability of both homogeneous
and inhomogeneous states, including, in the form of
periodically arranged large-amplitude strata.

This method can be easily generalized to any other sys-
tem. To do this it is necessary to expand functions in the
equations describing the properties of such a system into
a power series in the small amplitudes of the correspond-
ing states (in particular, harmonic ones) and confine our-
selves to the terms quadratic in the amplitudes.
Specifically, it can be shown that results following from
Eq. (74) remain qualitatively valid for other active distri-
buted media as well.

IX. ON THE DERIVATION OF THE EQUATIONS
DESCRIBING INTERACTION
BETWEEN AUTOSOLITONS AND TURBULENCE
IN ACTIVE DISTRIBUTED MEDIA

Turbulence in the form of stochastically oscillating in-
homogeneous macroscopic states can be observed in aero-
and hydrodynamic systems [11,14], nonequilibrium
electron-hole and gas plasma, various chemical media,
and other active distributed systems [5,6]. One of the
properties of turbulence is the absence of space correla-
tion in time-space stochastic oscillations. However, in
the majority of approaches this essential property of tur-
bulence is ignored, though it can be naturally taken into
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account within the framework of the presented variation-
al method.

In many systems turbulence is a process of the random-
ly appearing and disappearing of autosolitons at various
points of a system. This process is connected with non-
trivial properties and the complex character of interac-
tion between autosolitons [5,6]. First this interpretation
of turbulence was developed in Refs. [15,16] with applica-
tion to active distributed media and then used to explain
the turbulence picture observed in flows of fluids at the
near-critical Reynolds numbers [11].

In Sec. V it was found that auto-oscillations even of a
solitary stratum, can be of a stochastic character (Fig. 2).
Obviously, auto-oscillations of several pulsating strata or
autosolitons placed at the distance £, >L from one
another can be uncorrelated with respect not only to time
but to space as well, i.e., they can appear as turbulence of
some kind.

Turbulence can also occur in systems at a>1, when
pulsating strata and autosolitons do not take place (see
Secs. V and VII). In this case turbulence is connected
with the complicated dynamics of interaction between
autosolitons, as well as with some of their specific proper-
ties [15,16,5,6].

Interaction between autosolitons and dynamics of their
behavior can be studied on the basis of equations which
can be derived from the general equations (11) or (12).
To derive such equations one should, by analogy with
Egs. (44) and (45), write down the inhomogeneous state,
corresponding to spike autosolitons placed at the dis-
tances .L; > L from one another, in the form

x—L
0(x)=3 {C{¥cosh™? | — &
< 21
lx — L]
+C{Rexp ———L"— +Cp (76)
(k) |x — L]
17(x)= 2 C2] eXp _'—L— +C22 N (77)
k

where kK =0,1,2,..,N is the number of autosolitons. The
substitution of Egs. (76) and (77) into Egs. (19)-(22)
yields expressions for the functionals ®; and ®,, in which
interaction between autosolitons is described by the terms
proportional to the overlap integrals of functions 6(x)
and 7(x) corresponding to different autosolitons [sub-
scripts k in Egs. (76) and (77)].

When the distance L, between autosolitons essentially
exceeds L, we can confine ourselves to considering only
the interaction between the adjacent autosolitons. In oth-
er words, when calculating integrals in Eq. (11) or (12),
we can take into account only the overlap of the func-
tions describing the adjacent autosolitons. It allows an
easy derivation of equations describing dynamics of
several interacting spike autosolitons.

These equations can have solutions in the form of sto-
chastically oscillating autosolitons which are not corre-
lated in both time and space. The distances between the
autosolitons, i.e., the quantities .L, in Egs. (76) and (77),
can also vary in the process of auto-oscillations.

In the stationary case we can find the value of 4 at
which the solution, describing a state in the form of two
autosolitons placed at a distance £, from each other,
disappears. In other words, we can find the dependence
of the maximum distance between autosolitons, i.e., the
quantity .L_,., on the system’s excitation level (parameter
A). On the other hand, from these equations we can find
the minimum distance .L_;, at which the two autosolitons
become unstable, to be more precise, find the dependence
of L, on A. For certain systems there may exist a
range of values of A where the -condition
Lol A)>L, . (A) is satisfied. In this case turbulence
can occur even at a>1 [5,15]. Analysis also shows that
at a>1 turbulence connected with the effect of self-
annihilation of autosolitons in the process of their forma-
tion [5,6] occurs if the term (6>—7) in Eq. (17) is multi-
plied by 7.

X. CONCLUSION

It follows from the analysis carried out for the concrete
system that the presented variational method allows us to
study analytically the shape, evolution, and dynamics of
rather complicated one-dimensional states with relatively
high accuracy, without using numerical methods. Let us
stress that, on the basis of the general equation (11) or
(12), it is fairly easy to generalize the obtained results to
two and three dimensions.

Note that to efficiently use the method presented it is
necessary to find an approximate shape of inhomogene-
ous states occurring in a given system using numerical or
qualitative analysis. For many systems such an analysis
can be carried out on the basis of the general qualitative
theory of dissipative structures in active distributed
media [4,6].

The presented variational method can be useful for the
study of inhomogeneous macroscopic states in many oth-
er dissipative systems, including those in aero- and hy-
drodynamic systems, in particular, of the states occurring
at convective instability of a fluid layer (the Bénard prob-
lem). When taking such an approach one should first
study an isolated Bénard cell (which in this case is an au-
tosoliton) in more detail, and then study properties and
interaction between such cells and autosolitons; further,
on the basis of the ideas presented, one can derive ordi-
nary differential equations describing hydrodynamic tur-
bulence, to be more precise, characteristic parameters of
the Bénard cells stochastically oscillating in time and
space. We believe that this approach will be useful for
deriving simplified equations describing turbulence in
other hydrodynamic systems as well.
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